III Semester M.Sc. Degree Examination, December 2014 (Y2K11 Scheme) (RNS) MATHEMATICS M 301 : Topology – II

Time : 3 Hours

Max. Marks: 80

Instructions : i) Answer any five questions, choosing atleast two from each Part.

ii) All questions carry equal marks.

PART-A

1.	a)	Show that a continuous image of a compact space is compact.	4
	b)	Define a countably compact space. Show that every compact space is countably compact. Is the converse true ? Justify your answer.	7
	c)	Prove that countably compactness does not imply sequentially compact.	5
2.	a)	Prove that every second axiom space is a first axiom space. Show that converse is false.	6
	b)	Prove that a metric space (X, d) is countably compact iff every countable open cover has a finite subcover.	6
	c)	Prove that a compact metric space is complete.	4
3.	a)	Show that the product space $X \times Y$ is Hausdorff space iff X and Y are Hausdorff spaces.	6
	b)	Show that $X \times Y$ is locally connected iff X and Y are locally connected.	5
	c)	Prove that $X \times Y$ is completely regular iff X and Y are completely regular.	5
4.	a)	Define T_0 – space. Prove that in a T_0 – space the closure of distinct points are distinct and conversely.	6
	b)	Define T_2 – space. Show that T_1 – space does not imply T_2 – space.	5
	c)	Show that a point x in a T_1 – space (X, J) is a limit point of a subset A of X if and only if every open set containing x contains infinitely many distinct points of A.	5

P.T.O.

PG – 137

PART-B

5.	a)	Define $T_3^{}$ – space. Prove that every metric space is a $T_3^{}$ – space.	4
	b)	Prove that a space (X, J) is regular iff given any open set G and $x \in G$, there	
		is an open set G^* such that $\ x\in G^*\subseteq \overline{G}^*\subseteq G$.	6
	c)	Prove that complete regularity is both topological and hereditary.	6
6.	a)	Define normal space. Prove that a closed subspace of a normal space is normal.	6
	b)	Prove that a compact Hausdorff space is normal.	6
	c)	Is the normality property hereditary ? Justify your answer.	4
7.	a)	State and prove Tietze's extension theorem.	12
	b)	Prove that a normal space is regular iff it is completely regular.	4
8.	a)	Prove that a space is completely normal iff every subspace is normal.	9
	b)	Define paracompact space. Prove that every paracompact space is normal.	7